A new gene editing tool that helps cellular machinery skip parts of genes responsible for diseases has been applied to reduce the formation of amyloid-beta plaque precursors in a mouse model of Alzheimer’s disease, researchers at the University of Illinois Urbana-Champaign report.
SPLICER uses a gene editing approach called exon skipping, which is of particular interest for health conditions caused by mutations that produce misfolded or toxic proteins, such as Duchenne’s muscular dystrophy or Huntington’s disease.
Perez-Pinera a professor of bioengineering said “But for diseases like Alzheimer’s, Parkinson’s, Huntington’s or Duchenne muscular dystrophy, this approach holds a lot of potential. The immediate next step is to look at the safety of removing the targeted exons in these diseases, and make sure we aren’t creating a new protein that is toxic or missing a key function. We would also need to do longer term animal studies and see if the disease progresses over time.”